

Stefano FEDERICI, Par.O.La s.a.s.

An efficient algorithm for the automatic building of a lexicon from textual
corpora

Abstract

The LE-2111 SPARKLE (Shallow Parsing and Knowledge extraction for Language Engineering) project is
aimed at the automatic extraction of lexical and semantic information from textual corpora in order to improve
the performances of NLP systems. In this paper we describe an algorithm for the extraction of subcategorization
patterns for Italian verbs. The extraction procedure is carried out on the basis of an efficient and accurate
analogy-based engine and pre- and post-filters based on simple linguistic constraints. Despite the simplicity of
the analogy-based algorithm the amount of lost information is negligible, and precision and recall over a set of
hand-crafted subcategorization patterns (namely those produced within the LE PAROLE project) is fairly high.

Keywords: linguistic knowledge extraction, lexicon building, finite state automata, chunking

1. The Sparkle Project

Shallow parsers have been developed to build partial syntactic analyses of sentences without
the aim of building a complete syntactic structure in which all syntactic dependencies are
solved (Briscoe 1997). A shallow parse of a sentence is a flat structure in which the main
syntactic building blocks of the sentence are identified. Dependency links among these
building blocks are only solved when the necessary cues are available, thus leaving a
considerable amount of ambiguity in the analysed sentence.

In the first phase of the Sparkle Project (Sparkle Project 1995), corpora of millions of words
in different languages (English, German and Italian) have been analysed by shallow parsers
that do not rely on syntactic knowledge (Briscoe et al. 1996). In the second phase of the
project, lexical syntactic knowledge has been acquired from the shallow-parsed texts in order
to build a lexicon of subcategorization structures for English, German and Italian verbs. The
third phase is aimed at enhancing the shallow parsers used in the first phase by using the
information extracted in the previous phase in order to solve some of the dependencies left
unsolved and to build less ambiguous syntactic structures. The final phase will test the
improvements of the lexicalized parsers on a test bed of 200 sentences randomly extracted
from newspapers. The usefulness of the extracted lexical knowledge will be also tested on
some NLP applications, namely Machine Translation, Information Retrieval and Speech
Understanding.

2. Extracting subcategorization patterns of Italian verbs

The procedure used to extract subcategorization patterns of Italian consists of four main steps
(Calzolari et al. 1997, Federici et al. 1997):

 1 / 11 1 / 11

EURALEX '98 PROCEEDINGS

Table 1: The chunked sentence the red flag has been given to the winning team

Linguistically-based heuristics are then used to prune out the contexts that potentially contain
some misleading chunks. To give but an example, N C s that contain time expression could
be confused with the subject or the object of a sentence (e.g. this evening in the sentence /
will come this evening). This procedure does not prune out a great amount of contexts, on

HEAD:
CONT:
CONT:

[FV_C has been given]
[N_C the red flag]
[P C to the winning team].

130

1. Extraction: contexts of verbal headwords are extracted from shallow-parsed texts. Some
simple linguistic heuristics are then used to prune out some contexts that potentially contain
misleading information (see section 2.1).

2. Carving: the extracted contexts are shortened to the left and right of the headword
(Calzolari et al. 1997). For example, an isolated adjective immediately proceeding a verbal
headword is cut out.

3. Coring: cores (potential subcategorization patterns) are extracted from carved contexts by
comparing the latter pairwise.

4. Typing: eventually, cores are typed in order to identify those cores that do not represent
subcategorization patterns. Cores that potentially contain misleading information are then
pruned out (see section 2.3).

Only the remaining cores that have not been typed in Step 4 are then output as a result of the
acquisition procedure. In this paper we will concentrate on Step 3, the analogy-based
algorithm for the acquisition of subcategorization patterns. We will start with a brief descrip
tion of the shallow parser used to analyse the texts.

2.1. Extracting contexts from text

Contexts of verbal headwords are extracted from a text pre-analysed by a shallow parser, the
Chunker system, that hinges only on information about i) the part of speech of each word, and
ii) closed classes (e.g. predeterminers, auxiliaries) (Federici et al. 1996). The chunker is made
up of eight Finite State Automata extrinsecally ordered to parse 10 possible different
structures called chunks. An example of chunked sentence is the following: [N_C the red
flag] [FV_C has been given] [P_C to the winning team], where a Nominal Chunk (N_C) is
followed by a Finite Verb Chunk (FV_C) and a Prepositional Chunk (P_C). This simple
analysis has the desired features: the words stick together and what emerges is that the verb
give in its passive form can be preceded by a N_C, and can be followed by a P_C introduced
by to. Despite its simplicity, the correctness of the chunking process —98% of correct chunks
(Federici et al. 1996)— guarantees a sufficient degree of reliability for the extraction task.

Contexts extracted from chunked texts contain a headword chunk (the chunk that contains the
verb we are interested in) followed by the sequence of the surrounding chunks (contextual
chunks). For example the context extracted from the previous sentence would be represented
as in Table 1.

 2 / 11 2 / 11

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

feature headword
chunk

contextual
chunks

c c (Chunk Category: e.g. N C,P C) no yes
PREP (Preposition) no yes
CAUS (has Causative verb) yes no
CLIT (has Clitic pronoun) yes no
AUX (has Auxilary verb) yes yes
INTRO (has Introducer) no no
MODIF (has adjectival or adverbial Modifier) not relevant3 no
SUBCONJ (has Subordinating Conjunction) no yes
LEMMA (Lemma) yes no
POS (Part of Speech) yes no
MORPH (Morphosyntactic Features) no no
DIRECTION (Direction (left/right) wrt the Headword Chunk) not relevant yes
POSITION (Position wrt the Headword Chunk) not relevant yes
GFUNC (Grammatical Function) not relevant yes

Table 2: The feature sets for headword and contextual chunks and their settings

Each context is likely to overlap with more than one other context: out of all resulting cores
MF selects only one core, namely the one exhibiting the largest number of common features.
For example, starting from contexts 1 and 2 in Table 3 (for the sake of clarity, the
corresponding contextual chunks are aligned) we obtain the core in Table 4.

131

average less than 3.73% of extracted contexts is not used in the core extraction procedure
(Calzolari et al. 1997, Federici et al. 1997).

Internal storing of extracted contexts is performed by eliminating all redundancies and by
indexing the contexts by chunk-type using a tree-like index. This allows the system to speed
up the extraction and coring steps.

2.2. Extracting cores

The comparison of contexts is aimed at finding what any pair shares, under the assumption
that a subcategorization pattern of a verb is what two or more contexts of that verb have in
common, the variable part of the contexts being ascribed to syntactic modification of various
sorts. The common part of two contexts is what we call core.

After shortening the extracted contexts in the carving step, cores are extracted from the set of
contexts by comparing pair. Comparison is performed by means of an analogy-based
algorithm, a specialized version of a general algorithm for the automatic acquisition of
linguistic knowledge (Federici & Pirrelli 1997). The most significant part of the algorithm is
the Mapping Function (MF) which governs the way generalizations are derived from
examples. MF is flexible enough to allow the system to find relevant similarities in very
different contexts. For each context pair, starting from the headword chunk, MF extracts all
chunks that share some desired features1 (defined in an external file). There are two distinct
sets of features (Table 2) for the headword and contextual chunks.2 The settings shown in
Table 2 are those used to obtain the results described in section 3.

 3 / 11 3 / 11

EURALEX '98 PROCEEDINGS

Context 1 Context 2
HEAD
CONT
CONT
CONT

[FV_C has been given]
[A D V C yesterday]
[N_C the red flag]
[P_C to the winning team]

HEAD

CONT
CONT
CONT

[F V C has been given]

[N_C the letter]
[P_Ctomeman]
fp Cinmerooml

Table 3: Two chunked contexts

Core
HEAD: [FV C has been given]
CONT: [N_C]
CONT: [P Ctol

Table 4: The core extracted from contextl and context?

MF can be guided through a definition of how the mapping is to be performed. Indeed, the
algorithm can extract the cores either in a continuous or discontinuous way. By setting the
parameter 'Continuous Match', the user can force the algorithm to extract a core if and only if
the headword and contextual chunks that share the desired features are adjacent to one
another.

If 'Continuous Match' is disabled, MF is allowed to compare two contexts without having to
take into account the relative position of contextual chunks. This can be useful when a
particular verb has only a few occurrences in the corpus, thus allowing us to get around the
problem of sparse data. In any case, by setting on the DIRECTION and POSITION features
and the 'Continuous Match' flag a more restrictive comparison can be performed. These latter
settings reduce significantly the amount of extracted cores.

2.3. Typing cores

When the extraction procedure has come to an end, the typing step is carried out. The
resulting cores are supposed to contain only complements that depend on the headword and
can thus be the potential subcategorization patterns of the verb we are interested in.

Core typing is carried out by comparing to one another the extracted cores. Cores are typed
(see Table 5) to identify those that potentially contain misleading information.

Noisy (Cores that contain contextual information that could not depend on the headword)
Subsumed (Cores containing subcategorization information contained in other selected cores)
Low-frequency (Cores mat match less than a certain amount of contexts)
Bare (Cores that have no contextual information)

Table 5: Core Types

Let us briefly illustrate the mechanism used for core typing. Noisy cores, that is cores
containing contextual information that could not depend on the headword, are identified by
checking if the complements that are contained in a potential subcategorization pattern can be
also found in isolation in another core. This criterion is a very weak form of optionality
check. A subsumption criterion that is reminiscent of the set inclusion test is then applied to
identify those cores that contain subcategorization information contained in other (bigger)
cores. The identification of cores that have a low-frequency of occurrence (low frequency
cores) and that do not have contextual information (bare cores) is rather straightforward.

132

 4 / 11 4 / 11

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

3. Analysis of preliminary results

In the current phase of the Sparkle project, Italian subcategorization patterns have been
extracted for a set of 30 verbs that have been selected for the representativeness of their
subcategorization patterns. The list of verbs and the obtained results are shown in Tables 6-
12. Results of the acquisition procedure are obtained by applying the described algorithm to a
corpus of about one million words. The extraction algorithm is efficient and economical
because the extracted subcategorization information meets very restrictive conditions. In
Table 7 the number and the percentage of extracted and selected cores (potential subcatego
rization patterns) resulting at the end of the extraction procedure is given with respect to the
total number of contexts in the acquisition corpus. In the average, these percentages are 30%
and 7% and they never overcome the thresholds of 50% and 29% respectively. This clearly
shows that the procedure is not tailored on some well-behaving verbs.

verb contexts extracted cores selected cores
number percentage

wrt context
number percentage

wrt contexts
aggiungere 'add' 261 62 24% 7 3%
aggiustare 'fix' 7 3 43% 2 29%
aiutare 'help' 99 25 25% 6 6%
aspettare 'expect' 106 39 37% 7 7%
cambiare 'change' 182 46 25% 13 7%
caricare 'charge' 23 7 30% 1 4%
causare 'cause' 35 14 40% 3 9%
chiamare 'call' 90 34 38% 5 6%
chiedere 'ask' 316 85 27% 16 5%
cominciare 'begin' 163 33 20% 9 6%
concordare 'agree' 58 29 50% 7 12%
considerare 'consider' 235 87 37% 11 5%
costruire 'build' 55 18 33% 1 2%
credere 'believe' 156 49 31% 7 4%
dare 'give' 1088 48 4% 41 4%
decidere 'decide' 393 89 23% 15 4%
fornire 'provide' 154 56 36% 9 6%
muovere 'move' 119 34 29% 9 8%
oscillare 'swing' 28 11 39% 1 4%
permettere 'allow' 211 51 24% 8 4%
piacere 'like' 36 11 31% 5 14%
portare 'bring' 432 107 25% 25 6%
produrre 'produce' 110 30 27% 3 3%
scegliere 'choose' 112 30 27% 10 9%
sembrare 'seem' 422 108 26 15 4%
sentire 'feel' 68 25 37% 3 4%
stabilire 'establish' 160 48 30% 15 9%
tagliare 'cut' 90 29 32% 11 12%
terminare 'end' 35 11 31% 3 9%
trovare 'find' 413 129 31% 15 4%
AVERAGE 188.6 44.9 30% 9,4 7%

Table 7: Number and percentage of selected and extracted cores for the 30 verbs

133

 5 / 11 5 / 11

EURALEX '98 PROCEEDINGS

The average values given in table 7 do not imply that these percentages are fairly constant or
that, for bigger corpora, the amount of extracted and selected cores indefinitely grows. On the
contrary, in Table 8 the percentage4 of selected cores (potential subcategorization patterns)
resulting at the end of the extraction procedure for a high frequency verb (dare 'give', on the
left), a medium frequency verb (cominciare 'start', in the center) and a low frequency verb
(piacere ' like', on the right) is given: the gentle decrease of this value for increasing corpus
sizes clearly indicates that the extraction procedure does not extract more and more patterns
as the corpus grows.

Table 8: Percentage of selected cores for dare 'give', cominciare 'start' and piacere
'like' (X-axis: number of words in the acquisition corpus; Y-axis: percentage of
selected cores)

Furthermore, despite the number of filtering steps (e.g. carving, coring, delimitation
heuristics), the amount of lost information is small. Indeed, the analysis of pruned out cores
has shown that they almost ever contain useless information. In Table 9 the number of frames
that have been correctly selected, with respect to the total amount of frames listed in the
Parole lexicon and the frames available in the corpus, is shown.

verb lexicon identified missed not in the recall recall
frames Corpus wrt Parole wrt Corpus

aggiungere 'add' 6 5 0 0 83% 83%
aggiustare 'fix' 3 2 1 1 67% 100%
aiutare 'help' 5 5 0 0 100% 100%
aspettare 'expect' 6 3 2 0 50% 50%
cambiare 'change' 10 5 5 4 50% 83%
caricare 'charge' 5 0 5 1 0% 0%
causare 'cause' 1 1 0 0 100% 100%
chiamare 'call' 8 3 5 2 38% 50%
chiedere 'ask' 8 6 1 0 75% 75%
cominciare 'begin' 7 6 1 0 86% 86%
concordare 'agree' 7 4 4 2 57% 80%
considerare 'consider' 11 5 6 2 45% 56%
costruire 'build' 1 0 1 0 0% 0%
credere 'believe' 9 5 4 2 56% 71%
dare 'give' 12 8 4 3 67% 89%
decidere 'decide' 8 6 2 1 75% 86%
fornire 'provide' 4 2 2 1 50% 67%
muovere 'move' 14 4 10 9 29% 80%
oscillare 'swing' 2 1 1 0 50% 50%
permettere 'allow' 5 3 2 0 60% 60%
piacere 'like' 3 0 3 1 0% 0%
portare 'bring' 19 14 5 0 74% 74%
produrre 'produce' 6 1 5 4 17% 50%
scegliere 'choose' 6 3 3 0 50% 50%

134

 6 / 11 6 / 11

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

verb lexicon identified missed not in the recall recall
frames Corpus wrt Parole wrt Corpus

sembrare 'seem' 17 6 11

oo 35% 67%
sentire 'feel' 14 4 10 5 29% 44%
stabilire 'establish' 6 4 2 2 67% 100%
tagliare 'cut' 13 8 5 5 62% 100%
terminare 'end' 5 3 2 1 60% 75%
trovare 'find' 12 8 4 2 67% 80%
AVERAGE 7.77 4.17 3.5 1.87 53% 70%

Table 9: Sparkle subcat frames vs Parole Lexicon and the Corpus

As we can see, even from a comparatively small corpus of 1 million words, the system
extracted more than a half of the expected frames (recall wrt Parole). For what concerns the
case of a context not matching any of the selected subcategorization patterns, this is mainly
due to the fact that this context occurs only once in the corpus and then it is the only context
matching its subcategorization pattern (Calzolari et al. 1997, Federici et al. 1997). Indeed, as
shown above, the Mapping Function needs two contexts to extract a potential
subcategorization pattern (Federici & Pirrelli 1997). Furthermore, because of the size of the
corpus (and its specialization in the financial domain), not all frames are available. So, when
compared to the frames really available in the corpus, 70% of them are selected. This does not
imply that the remaining frames are not extracted at all. Indeed, most of the missed frames are
discarded as low frequent ones. We expect that these frames will be promoted to selected
frames when we increase the corpus size. In this case the recall (recall wrt Corpus) nicely
grows to 84%. Finally, not all selected frames are correct In Table 10 we counted the number of
correctly selected frames, that is those frames that do not contain chunks that do not depend on the
head verb.

verb selected correct precision of
cores selections correct

selections
aggiungere 'add' 7 7 100%
aggiustare 'fix' 2 2 100%
aiutare 'help' 6 6 100%
aspettare 'expect' 7 5 71%
cambiare 'change' 13 8 62%
caricare 'charge' 1 1 100%
causare 'cause' 3 1 33%
chiamare 'call' 5 5 100%
chiedere 'ask' 16 15 94%
cominciare 'begin' 9 7 78%
concordare 'agree' 7 6 86%
considerare 'consider' 11 7 64%
costruire 'build' 1 1 100%
credere 'believe' 7 6 86%
dare 'give' 41 10 24%
decidere 'decide' 15 10 67%
fornire 'provide' 9 2 22%
muovere 'move' 9 9 100%
oscillare 'swing' 1 1 100%
permettere 'allow' 8 8 100%
piacere 'like' 5 5 100%
portare 'bring' 25 17 68%

135

 7 / 11 7 / 11

E U R A L E X '98 PROCEEDINGS

verb selected correct precision of
cores selections correct

selections
produrre 'produce' 3 IO

67%
scegliere 'choose' 10 8 80%
sembrare 'seem' 15 11 73%
sentire 'feel' 3 100%
stabilire 'establish' 15 9 60%
tagliare 'cut' 11 7 64%
terminare 'end' 3 3 100%
trovare 'find' 15 11 73%
AVERAGE 9.4 6.4 79%

Table 10: Precision of selected frames

More detailed results concerning those frames of the Parole Lexicon that have not been
extracted (missed frames) and the frames that have been selected, but do not belong to the
Parole Lexicon (over-extracted frames), are given in Table 11.

verb correct missed frames over-extracted frames
selections

not low total redundant partial noisy chunker total
selected freq errors

aggiungere 'add' 5 0 0 0 3 0 0 0 3
aggiustare 'fix' 2 0 0 0 0 0 0 0 0
aiutare 'help' 5 0 0 0 1 0 0 0 1
aspettare 'expect' 3 2 0 2 3 0 0 0 3
cambiare 'change' 5 1 0 1 5 0 4 1 10
caricare 'charge' 0 4 0 4 0 1 0 0 1
causare 'cause' 1 0 0 0 0 0 1 1 2
chiamare 'call' 3 1 2 3 0 0 0 0 0
chiedere 'ask' 6 1 0 1 8 0 0 1 9
cominciare 'begin' 6 0 1 1 0 0 0 2 2
concordare 'agree' 4 0 2 2 1 0 1 0 2
considerare 'consider' 5 2 2 4 4 0 1 0 5
costruire 'build' 0 0 1 1 1 0 0 0 1
credere 'believe' 5 0 2 2 2 0 0 1 3
dare 'give' 8 1 3 4 3 0 30 1 34
decidere 'decide' 6 0 1 1 6 0 4 1 11
fornire 'provide' 2 0 1 1 0 0 7 0 7
muovere 'move' 4 1 0 1 5 0 0 0 5
oscillare 'swing' 1 0 1 1 0 0 0 0 0
permettere 'allow' 3 0 2 2 5 0 0 0 5
piacere 'like' 0 2 0 2 2 3 0 0 5
portare 'bring' 14 2 3 5 1 4 8 0 13
produrre 'produce' 1 0 1 1 1 0 1 0 2
scegliere 'choose' 3 3 0 3 5 0 2 0 7
sembrare 'seem' 6 3 8 11 5 0 4 0 9
sentire 'feel' 4 4 1 5 0 0 0 0 0
stabilire 'establish' 4 0 0 0 5 0 1 0 6

136

 8 / 11 8 / 11

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

verb correct
selections

missed frames over-extracted frames verb correct
selections

not low total
selected freq

redundant partial noisy chunker
errors

total

tagliare 'cut' 8 0 0 0 0 0 2 2 4
terminare 'end' 3 1 0 1 0 0 0 0 0
trovare 'find' 8 0 2 2 3 0 7 0 10

Table 11: Missed and over-extracted frame analysis

Most of the frames that have not been extracted are frames that occur rarely in the corpus
(low freq). As to over-extracted ones, frames that contain adjuncts that have not been
considered as relevant to the head verb in the Parole lexicon (redundant frames), but that are
not wrong in a strict sense as they still depend on the head verb, are near 44%.

In the final table (Table 12) we compare the amount of frames that are listed in the Parole
lexicon (Lexicon) with the frames that are available in the corpus (Corpus), the frames that
can be extracted by our algorithm as they appears more than once in the corpus (Corpus > 1)
and the frames that are currently selected by our algorithm (Sparkle). The number of selected
frames is then augmented with the number of frames that have been extracted but that have
been classified as low frequent (low freq) due to their small number of occurrences in the
corpus (Expected Sparkle). This last figure is the number of frames that we expect to be
extracted as the size of the corpus increases.

Table 12: Number of frames for the 30 verbs (X-axis: Sparkle verbs; Y-axis: number
of frames)

137

 9 / 11 9 / 11

EURALEX '98 PROCEEDINGS

The comparison of the number of frames that our algorithm could potentially extract
(Corpus > 1) and the number of selected and low frequent frames (Expected Sparkle) gives a
good idea of the potential of our algorithm even when the kind of constraints we imposed on
the extraction procedure (e.g. continuity, carving, pruning of some contexts) is used. The
biggest differences between the available and the selected frames are for the verbs caricare
'charge', aspettare 'expect', sentire 'feel' and piacere 'feel'. For aspettare and sentire the
failure is due to a small amount of available contexts for each frame: they range from 2 to 3.
For caricare and piacere, the strict constraints imposed on the position of the complements
(we asked for a perfect correspondence for the DIRECTION and POSITION features) have
blocked the identification of long distance matches.

4. Conclusions

We have used a text corpus of about one million words to obtain the above shown results. For
such a comparatively small corpus the illustrated procedure could be considered as discarding
too much relevant information. The idea behind the acquisition procedure is that, by means of
an analogy-based algorithm, the subcategorization patterns of a verb can be acquired from
simple cases without loss of important patterns, even if the amount of available contexts is
relatively small (Calzolari et al. 1997, Federici et al. 1997): cases of only 20-30 or fewer
contexts per verb are not unusual.5

Nevertheless, the algorithm proved to be accurate and results are promising. We have
compared the potential subcategorization patterns selected by the analogy-based algorithm
with a set of hand-crafted subcategorization patterns produced within the LE PAROLE
project (Ruimy et al. 1998). Recall and precision are fairly good and are expected to increase
when a bigger corpus is used.

5. Notes

1 The set of values given in the Table are the ones used in the extraction experiment carried out on a set
of 30 verbs selected by the Sparkle Project Consortium.

2 Hereafter the formalized features are not explicitely shown within the chunks.

3 In order to obtain a better performance of the core extraction procedure, modifiers appearing in the
headword chunk are moved in contextual chunks with relative position 0.

4 Percentages are calculated wrt the total amount of extracted contexts (the number of occurrences of the
verb).

5 Procedures for extraction of linguistic knowledge from textual corpora are mainly based on statistics.
However, the estimation of parameters in statistical methods for knowledge extraction is generally not
credited to be reliable enough when confronted with so sparse data.

6. References

Briscoe T. (1997). Robust Parsing, in Varile G.B., Zampolli A. (eds.), Survey of the State of
the Art in Human Language Technology. Giardini Editori, Pisa.

138

 10 / 11 10 / 11

COMPUTATIONAL LEXICOLOGY AND LEXICOGRAPHY

SPARKLE project (1995). Technical Annex.
Briscoe T., J. Carroll, G. Carroll, S. Federici, G. Grefenstette, S. Montemagni, V. Pirrelli, M.

Rooth, I. Prodanof, M. Vannocchi. (1996). Phrasal Parser Software, in Deliverable
3.1. LE-2111 SPARKLE project.

Calzolari N., S. Federici, S. Montemagni, V. Pirrelli (1997). Contribution to Deliverable 5.1
"Syntactic and Semantic Type and Selection". LE-2111 SPARKLE project.

Federici S., S. Montemagni, V. Pirrelli (1996). Shallow Parsing and Text Chunking: a View
on Underspecification in Syntax, in Proceeding of the Workshop on Robust Parsing.
ESSLLI, Prague.

Federici S., S. Montemagni, V. Pirrelli (1997). The Automatic Building of a Lexicon from
Textual Corpora. Sparkle Working paper. Submitted to Coling 98.

Federici S., V. Pirrelli (1997). Analogy, Computation and Linguistic Theory, in Jones D.,
Somers H. (eds), New Methods in Language Processing. UCL Press, London.

Ruimy N., M. Battista, O. Corazzari, E. Gola, A. Spanu (1998). Italian Lexicon
Documentation, in WP3.11. LE-PAROLE, Pisa.

139

Powered by TCPDF (www.tcpdf.org)

 11 / 11
Powered by TCPDF (www.tcpdf.org)

 11 / 11

http://www.tcpdf.org

